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Abstract: In less than two decades, Nonlinear Model Predictive Control (NMPC)
has evolved from a conceptual framework to an attactive, general approach for
the control of constrained nonlinear processes. These advances were realized
both through better understanding of stablity and robustness properties as
well as improved algorithms for dynamic optimization. This study focuses on
recent advances in optimization formulations and algorithms, particularly for
the simultaneous collocation-based approach. Here we contrast this approach
with competing approaches for on-line application and discuss further advances
to deal with applications of increasing size and complexity. To address these
challenges we adapt the real-time iteration approach developed in the context
of a multiple shooting (Diehl et al., 2006; Bock et al., 2006) to a collocation-
based approach with a full space nonlinear programming solver. We show that
straightforward sensitivity calculations from the KKT system also lead to a real-
time iteration strategy, with both shifted and non-shifted variants. This approach
is demonstrated on a large-scale polymer process, where on-line calculation effort
is reduced by about two orders of magnitude.

Keywords: nonlinear model predictive control, nonlinear programming,
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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) has
evolved over the past decade into an efficient gen-
eral purpose method for process control of large
systems. This approach has the key advantage
that it is a general purpose multivariable control
strategy that can handle constrained, nonlinear
systems directly. On the other hand, efficient dy-
namic optimization strategies are needed for on-
line, time critical solutions.

Recent developments in large-scale nonlinear pro-
gramming (NLP) algorithms have enabled the

on-line solution of these problems. In particular,
in a recent IFAC workshop, numerous industrial
applications have been presented including con-
tributions from Exxon Mobil (Bartusiak, 2006),
BASF (Nagy et al., 2006) and ABB (Franke
and Doppelhamer, 2006). In addition, to enabling
NLP solvers, there is also a much better under-
standing of NMPC stability properties and associ-
ated dynamic optimization problem formulations
that provide them (Camacho and Bordons, 2006).
With these theoretical developments, NMPC ro-
bustness properties have also been developed and
analyzed (Magni and Scattolini, 2006).



Moreover, with the ability to solve dynamic opti-
mization problems on-line, the separation between
model predictive control and real-time optimiza-
tion tasks begin to disappear. A comprehensive
treatment of dynamic real-time optimization is
provided in (Groetschel et al., 2001), and it is clear
that with improved optimization formulations and
algorithms, the role of NMPC can be greatly
expanded. To realize this capability, performance
issues also need to be emphasized in addition to
stability properties. Related to these issues are:

• consideration of cost objectives into the
NMPC problem (Toumi et al., 2005; Groetschel
et al., 2001) instead of the typical deviation
from a reference value,

• providing for longer time horizons with addi-
tional constraints and degrees of freedom to
improve the cost objective,

• incorporation of multiple operating stages
within the predictive horizon. These may
include transitions in the predictive horizon
to product change-overs, nonstandard cyclic
operations, or anticipated shutdowns.

To bring these issues into practice, it is clear
that much larger dynamic optimization problems
need to be considered for on-line solution. Because
these still remain time-critical steps, much more
is demanded from enabling algorithms and their
implementations. In fact, the need to consider
these dynamic optimization applications leads to
the challenging and difficult task of maintaining
controller stability and performance. In particu-
lar, both of these properties are strongly affected
by the issue of feedback delay. A frequent assump-
tion is that on-line optimization for NMPC must
be performed quickly relative to the process dy-
namics. If not, both the performance and stability
characteristics deteriorate. The former was noted
(Santos et al., 2001) in an NMPC implementation
of a laboratory reactor as well as in numerous
industrial studies. Deterioration of stability was
noted in (Findeisen and Allgöwer, 2004), where a
detailed stability analysis is provided. To address
this issue, Diehl, Bock and coworkers (Bock et
al., 2006; Diehl et al., 2006) developed real-time
iteration strategies where the optimization strat-
egy is separated into preparation and feedback re-
sponse phases, where the latter represents the on-
line cost that affects the feedback delay. This ap-
proach was developed in the context of a multiple-
shooting strategy and Successive Quadratic Pro-
gramming (SQP). The current study relies closely
on this previous work. It applies a similar strategy,
but with a fully simultaneous optimization strat-
egy based on collocation on finite elements and a
sparse barrier NLP algorithm.

The next section provides a brief overview of
off-line dynamic optimization strategies. Here we

assess these computational strategies in terms
of computational cost and complexity, and focus
on characteristics of the simultaneous approach.
The third section then discusses the NLP solver,
IPOPT (Wächter and Biegler, 2006), as well as its
adaptation to NLP sensitivity. These sensitivity
calculations provide the basis for a fast partial
solution strategy for NMPC, which is developed
in the fourth section. The fifth section provides
a demonstration of this particular real-time iter-
ation approach on a large-scale industrial poly-
mer process, with shifted and non-shifted variants,
while the last section concludes the paper and
presents areas for future work.

2. OFF-LINE SOLUTION OF DYNAMIC
OPTIMIZATION PROBLEMS

For the purpose of this study, we consider the
optimization problem stated in the following form:

Min
N∑

k=1

ϕ(z(tk), uk) (1a)

s.t.
dzk(t)

dt
= f(zk(t), yk(t), uk),

t ∈ [tk−1, tk] (1b)

g(zk(t), yk(t), uk) = 0 (1c)

zk(tk−1) = zk−1(tk−1) (1d)

uL
k ≤ uk(t) ≤ uU

k (1e)

yL
k ≤ yk(t) ≤ yU

k (1f)

zL
k ≤ zk(t) ≤ zU

k (1g)

k = 1, . . . , N

where zk(t) ∈ <nx is the vector of state variables,
uk ∈ <nu is the vector of manipulated variables,
and yk(t) ∈ <ny is a vector of algebraic variables.
These are functions of the scalar “time” parameter
t ∈ [t0, tf ]. As constraints we have the differential
and algebraic equations (DAEs) (1b)-(1c) which
we assume without loss of generality are index
one.

A number of approaches can be taken to solve (1a)
- (1g). Until the 1970s, these problems were solved
using an indirect or variational approach, based on
the first order necessary conditions for optimality
obtained from Pontryagin’s Maximum Principle
(Pontryagin et al., 1962; Bryson and Ho, 1975).
For problems without inequality constraints, these
conditions can be written as a two-point boundary
value problem (TPBVP) which can be addressed
with a number of solution strategies; a review of
these approaches can be found in (Cervantes and
Biegler, 2000). However, if the problem requires
the handling of active inequality constraints, find-
ing the correct switching structure as well as suit-
able initial guesses for state and adjoint variables



is often very difficult. This limitation has made
the indirect approach less popular for NMPC ap-
plications.

On the other hand, direct methods that apply
NLP solvers can be separated into two groups,
sequential and the simultaneous strategies. In se-
quential methods, also known as control vector
parameterization, the control variables are dis-
cretized as uk. Often they are represented as piece-
wise polynomials (Vassiliadis et al., 1994a; Vas-
siliadis et al., 1994b; Barton et al., 1998) and
optimization is performed with respect to these
controls. Given initial conditions and a set of
control parameters, the DAE model is solved for
k = 1, . . . N within the inner loop of the NLP
solver; the control variables are then updated by
the NLP solver itself. Gradients of the objective
function with respect to the control coefficients
and parameters are calculated either from direct
sensitivity equations of the DAE system or by
integration of the adjoint equations. Several ef-
ficient codes have been developed for both sensi-
tivity methods including DDASAC, DASPK and
CVODES.

Sequential strategies are relatively easy to con-
struct and to apply as they contain the com-
ponents of reliable DAE solvers (e.g., DASSL,
DASOLV, DAEPACK) as well as NLP solvers
(NPSOL, SNOPT). On the other hand, repeated
numerical integration of the DAE model is re-
quired, which may become time consuming for
large scale problems. Moreover, it is well known
that sequential approaches have properties of sin-
gle shooting methods and cannot handle open
loop instability (Ascher and Petzold, 1998; Flores-
Tlacuahuac et al., 2005). Finally, path constraints
can be handled only approximately, within the
limits of the control parameterization.

Multiple shooting is a simultaneous approach that
inherits many of the advantages of sequential ap-
proaches. As seen in (1a) - (1g), the time domain is
partitioned into N smaller time elements and the
DAE models are integrated separately in each ele-
ment (Bock, 1983; Bock and Plitt, 1984; Leinewe-
ber, 1999). Control variables are parametrized as
in the sequential approach and gradient informa-
tion is obtained for both control variables as well
as the initial conditions of the states variables
in each element. Finally, the equality constraints
(1d) are added in the NLP to link the elements
and ensure that the states are continuous across
each element. As with the sequential approach,
bound constraints for states and controls can be
imposed directly at the grid points tk. For piece-
wise constant or linear controls this approxima-
tion is accurate, but bounds for the states may be
violated between grid points.

In the simultaneous approach, also known as di-
rect transcription, we discretize both the state
and control profiles in time using collocation on
the finite elements k = 1, . . . N . This approach
corresponds to a particular implicit Runge-Kutta
method with highest order accuracy and excel-
lent stability properties. Also known as fully im-
plicit Gauss forms, these methods are usually too
expensive (and rarely applied) as initial value
solvers. However, for boundary value problems
and optimal control problems, which require im-
plicit solutions anyway, this discretization is an
inexpensive way to obtain accurate solutions. On
the other hand, the simultaneous approach also
leads to large-scale NLP problems that require
efficient optimization strategies (Betts and Huff-
man, 1992; Biegler et al., 2002; Jockenhövel et
al., 2003). As a result, these methods directly
couple the solution of the DAE system with the
optimization problem; the DAE system is solved
only once, at the optimal point, and therefore
can avoid intermediate solutions that may not
exist or may require excessive computational ef-
fort. In the simultaneous approach the control
variables are discretized at the same level as
the state variables and, under mild conditions,
(see (Reddien, 1979; Cuthrell and Biegler, 1989;
Hager, 2000; Kameswaram and Biegler, 2005))
the Karush Kuhn Tucker (KKT) conditions of
the simultaneous NLP are consistent with the
optimality conditions of the discretized variational
problem, and convergence rates can be shown.
Moreover, as with multiple shooting approaches,
Simultaneous Approaches can deal with instabil-
ities that occur for a range of inputs. Finally, si-
multaneous methods allow the direct enforcement
of state and control variable constraints, at the
same level of discretization as the state variables
of the DAE system.

Nevertheless, simultaneous strategies require the
solution of large nonlinear programs, and special-
ized methods are required to solve them efficiently.
These NLPs are usually solved using either full
or reduced space versions of Successive Quadratic
Programming (SQP). While reduced space SQP
subproblems are very simular to their sequen-
tial and multiple shooting counterparts, full space
methods take advantage of the sparsity of the
DAE optimization problem. They are best suited
when the number of discretized control variables
is large (Betts and Huffman, 1992). Moreover,
second derivatives of the objective function and
constraints are needed, as are measures to deal
with directions of negative curvature in the Hes-
sian matrix (Wächter and Biegler, 2006). Betts
(Betts, 2001) provides a detailed description of the
simultaneous approach with full space methods,
along with mesh refinement strategies and case
studies in mechanics and aerospace.



Table 1. Computational Complex-
ity/NLP Iteration (with nw state
(differential and algebraic) variables,
nu manipulated variables, N time

steps, α = 2− 3, β = 1− 2)

Sequential Multiple Shooting Simultaneous

i nβ
wN nβ

wN —

ii nwnuN2 nw(nw + nu)N (nw + nu)N

iii nwn2
uN3 nw(nw + nu)2N (nw + nu)N

iv — n3
wN —

v (nuN)α (nuN)α ((nw + nu)N)β

vi — — (nw + nu)N

2.1 Comparison of Dynamic Optimization Strategies

Table 1 lists the complexity of the major algorith-
mic steps for dynamic optimization of (1a) - (1g)
using the sequential, multiple shooting and simul-
taneous strategies. While a detailed comparison
is often problem dependent, this table allows a
brief overview of the computation effort for each
method as well as a discussion of distinguishing
features.

• (i) Integration: To solve the DAE system, the
sequential and multiple shooting methods
invoke a DAE solver that integrates forward
in time and solves nonlinear equations at
each time step. The integration is performed
with a Newton solver invoked at each time
step, and often with a sparse matrix routine
embedded within the Newton solver. Sparse
factorization of the Newton step occurs at a
cost that scales little more that linearly with
problem size. For the simultaneous approach,
this step is part of the optimization steps (v
and vi).

• (ii) Sensitivity: Both multiple shooting and
sequential approaches obtain reduced gradi-
ents through direct sensitivity calculations of
the DAE system. While this calculation is
often implemented efficiently, the cost scales
with the number of inputs times the size of
the DAE system since previous factorizations
can be reused. With the sequential approach,
the number of inputs is nuN ; with multiple
shooting sensitivity is calculated separately
in each time step and the number of inputs
is nw + nu. For the simultaneous approach
the gradient calculation (through automatic
differentiation) scales with the problem size.

• (iii) Exact Hessian, (iv) Decomposition: Step
(iii) may be optional as NMPC often uses
a Gauss-Newton approximation for second
derivatives. This is often a reasonable choice
for quadratic objectives and requires minimal
additional computational cost. However, for
cost-based objectives, exact second deriva-
tives are preferred and extend from the sensi-
tivity calculation. For both multiple shooting
and sequential approaches the cost of reduced

Hessians scales roughly with the number of
inputs times the sensitivity time. In addition,
multiple shooting executes a decomposition
step which requires projection of the Hessian
to dimension nuN , through the factorization
of dense matrices. For the simultaneous ap-
proach the Hessian is very sparse and its cal-
culation (through automatic differentiation)
scales with the problem size.

• (v), (vi) Active Sets, Factorization and Step
Determination: Both multiple shooting meth-
ods require the solution of a quadratic pro-
gram (QP) with nuN variables, and dense
constraint and reduced Hessian matrices.
These require factorizations (cubic complex-
ity) and updates (quadratic complexity) to
solve the QP. The QP also chooses an active
constraint set, which is a combinatorial step.
Nevertheless, choosing the active set is often
accelerated in the QP by a “warm start.” As
seen in the next section, the simultaneous
approach considered here applies a barrier
approach where the active set is determined
from the solution of nonlinear (KKT) equa-
tions through a Newton method. The corre-
sponding Newton step is obtained through
factorization of a sparse linear system (v) and
a backsolve step (vi). On the other hand,
warm starts may be difficult to implement
with the barrier approach.

Table 1 shows that as the number of inputs nuN
increases, one sees a significant advantage to the
colllocation-based simultaneous approach; these
complexity advantages are aided significantly by
the barrier NLP solver. To conclude this sec-
tion, we briefly describe another feature, the real-
time iteration NMPC approach recently devel-
oped with multiple shooting.

2.2 On-line vs. Background Calculations

The real time iteration strategy was developed in
(Diehl et al., 2005b) in order to overcome off-line
computational costs for dynamic optimization.
This approach was developed in the context of
multiple shooting, but the stability analysis (Diehl
et al., 2005b; Diehl et al., 2005a) is general and
applies to simultaneous and (open-loop stable)
sequential approaches as well. In this approach
the calculations are separated into preparation,
feedback response and transition steps. Here, if the
NLP cannot be solved in one sampling instant, it
is solved in “background” for an initial condition
“close” to the measured (or estimated) state. Once
this state is obtained, a perturbed QP is solved to
update the NLP solution.

For the multiple shooting approach, the perturbed
QP can be formulated in two ways. To solve (1a)-



(1g) for the `th sampling time, the initial condition
is z1(t0) = ẑ(`), the measured state. In a non-shift
strategy, an N -element QP is derived from the
solution of this problem but with the initial con-
dition, z1(t0) perturbed to ẑ(` + 1), the measured
state at the next sampling time. On the other
hand, the shift strategy considers the solution of a
perturbed QP with N − 1 elements. Here the the
initial condition is z2(t1) = ẑ(` + 1) because the
first element is discarded, and gradient and Hes-
sian information for the next elements are shifted
backward, with control variable values replicated
for the N th element. In both cases, the only on-
line cost is the solution of the reduced QP itself
(item (v) in Table 1).

This study considers a similar separation of on-
line and background calculations for the collocation-
based approach. As seen from Table 1 this simul-
taneous approach has different bottleneck steps,
especially with respect to barrier NLP algorithms
and sparse linear solvers. These are explored in
the next two sections.

3. NLP ALGORITHM AND SENSITIVITY

To develop the real-time iteration framework, we
first consider methods for the solution of the
NLP resulting from the simultaneous formulation.
The discretized problem derived from (1a)-(1g) is
represented by:

Min f(x, p) (2a)

s.t. c(x, p) = 0 (2b)

xL ≤ x ≤ xU (2c)

with the parameter vector p. As this is a large-
scale NLP with many inequalities and a poten-
tially large number of degrees of freedom, we ap-
ply the IPOPT algorithm (Wächter and Biegler,
2006) for its efficient solution. The algorithm fol-
lows a barrier approach, where the bound con-
straints are replaced by logarithmic barrier terms
and added to the objective function to give:

minϕ(x, p) = f(x, p)− µ
n∑

i=1

ln(x(i) − x
(i)
L )

−µ
n∑

i=1

ln(x(i)
U − x(i)) (3)

s.t. c(x, p) = 0

with a barrier parameter µ > 0. Here, x(i) denotes
the ith component of the vector x. Since the
objective function of this barrier problem becomes
arbitrarily large as x(i) approaches either of its
bounds, a local solution x∗(µ) of this problem lies
in the interior of this set, i.e., xU > x∗(µ) >

xL. The degree of influence of the barrier is
determined by the size of µ, and under mild
conditions x∗(µ) converges to a local solution x∗ of
the original problem (2) as µ → 0. Consequently,
a strategy for solving the original NLP is to solve
a sequence of barrier problems (3), with index l,
for decreasing values of µl.

IPOPT follows a primal-dual barrier approach
and applies a Newton method to the KKT condi-
tions derived from (3), leading to solution of the
following sparse linear system at iteration j: Wj Aj −I

AT
j 0 0

Vj 0 Xj

 ∆x
∆λ
∆ν

= −

∇f(xj)+Ajλj−νj

c(xj)
XjVje− µje

 (4)

where we use the convention, X = diag(x), V =
diag(ν), Wj is the Hessian of the Lagrangian
function ∇xxf(xj) + c(xj)T λj , and Aj = ∇c(xj).
IPOPT solves this system by first solving the
smaller symmetric system that results from elim-
inating the last block row. Exact first and second
derivatives for this method can be evaluated in a
number of ways, including automatically through
the AMPL interface (Fourer et al., 1993). As a
result, local convergence of the Newton method
is fast and global convergence is promoted by a
novel filter line search strategy. More informa-
tion on IPOPT can be found in (Wächter and
Biegler, 2006).

3.1 IPOPT and NLP sensitivity

The barrier NLP algorithm also allows for con-
sideration of perturbed or parametric NLPs. Here
we summarize a set of well-known results both
for convergence of the barrier method as well
as related sensitivity calculations. We first relate
the solutions from the IPOPT algorithm to the
solution of (2). Following this we discuss the prop-
erties of sensitivity information from IPOPT.

Property 1. (Properties of the barrier trajectory).
Consider problem (2) with p = p0 and let f(x, p0)
and c(x, p0) be at least twice differentiable. Let
x(p0) be a local constrained minimizer of (2) with
the following sufficient optimality conditions at
x(p0):

(1) x(p0) is a KKT point,
(2) the Linear Independence Constraint Qualifi-

cation (LICQ) holds,
(3) strict complementarity holds at x(p0) for

the bound multipliers ν∗ satisfying the KKT
conditions.

(4) there exists ω > 0 such that qT W (x(p0), λ(p0))q ≥
ω‖q‖2 for equality constraint multipliers λ(p0)
satisfying the KKT conditions and all nonzero
q ∈ <nx satisfying LICQ.



If we now solve a sequence of problems (3) with
µl → 0, then:

• there is at least one subsequence of uncon-
strained minimizers (x(µl)) of the barrier
function converging to x(p0)

• for every convergent subsequence, the corre-
sponding sequence of barrier multiplier ap-
proximations is bounded and converges to
multipliers satisfying the KKT conditions for
x(p0).

• a unique, continuously differentiable vector
function x(µ) of the minimizers of (3) exists
for µ > 0 in a neighborhood of µ = 0

• limµ→0+ x(µ) = x(p0).
• ‖x(µ`)− x(p0)‖ = O(µ`).

Proof: The proof follows by noting that LICQ
implies MFCQ and invoking Theorem 3.12 and
Lemma 3.13 in (Forsgren et al., 2002).

This property indicates that nearby solutions of
(3) provide useful information for bounding prop-
erties for (2) for small positive values of µ.

For the parametric NLP problem (2) with a so-
lution at p = p0 we would like to compute the
sensitivities dx(p0)

dp and a perturbed solution ∆x =
∂x(p0)

∂p

T
(p− p0).

Property 2. (Sensitivity Properties). For problem
(2) assume that f(x, p) and c(x, p) are m times
differentiable in p and m + 1 times differentiable
in x. Also, let the assumptions of Property 1 hold
for problem (2) with p = p0, then at the solution:

• x(p0) = x(p0) is an isolated minimizer and
the associated multipliers λ(p0) and ν∗ are
unique.

• for some p in a neighborhood of p0 there
exists an m times differentiable function
s(p)T = [x(p)T λ(p)T ν(p)T ] that corre-
sponds to a locally unique minimum for (2)
and s(p0) = s∗.

• for p near p0 the set of binding inequalities
is unchanged and complementary slackness
holds.

Proof: The result follows directly from Theorem
3.2.2 and Corollary 3.2.5 in (Fiacco, 1983).

We now relate sensitivity results between (3) and
(2) with the following result.

Property 3. (Barrier Sensitivity Properties). For prob-
lem (3) assume that f(x, p) and c(x, p) are m
times differentiable in p and m + 1 times differen-
tiable in x. Also, let the assumptions of Property
1 hold for problem (2), then at the solution of (3)
with a small positive µ:

• x(µ, p0) is an isolated minimizer and the
associated barrier multipliers λ(µ, p0) and
ν(µ, p0) are unique.

• for some p in a neighborhood of p0 there
exists an m times differentiable function
s(µ, p)T = [x(µ, p)T λ(µ, p)T ν(µ, p)T ] that
corresponds to a locally unique minimum for
(3).

• limµ→0,p→p0 s(µ, p) = s∗.

Proof: The result follows from Theorem 6.2.1
and Corollary 6.2.2 in (Fiacco, 1983). These were
originally proved for a mixed penalty function but
the proofs are easily modified to deal with barrier
functions.

Calculation of the sensitivities now proceeds from
the implicit function theorem applied to the opti-
mality conditions of (3) at p0. Defining the quan-
tities;

M(s(µ, p0)) =

[
W (s(µ, p0) A(x(µ, p0)) −I

A(x(µ, p0))
T

0 0
V (p0) 0 X(p0)

]
(5)

Np(s(µ, p0)) =

[
∇x,pL(s(µ, p0))
∇pc(x(µ, p0))

0

]
(6)

we see that if the assumptions of Property 1 hold,
M(s(µ, p0)) is nonsingular and the sensivities can
be calculated from:

ds(µ, p0)
dp

T

= −M(s(µ, p0))−1Np(s(µ, p0). (7)

For small values of µ and ‖p−p0‖ it can be shown
from the above properties (Fiacco, 1983) that

s(p, µ) =−M(s(µ, p0))−1Np(s(µ, p0)(p− p0)

+O‖p− p0‖2 (8)

s(p, 0) = s(p, µ) + O(µ) (9)

3.2 Sensitivity Implementation with IPOPT

The sensitivity calculation in (8) is inexpen-
sive, and requires a only single factorization of
M(s(µ, p0)) as well as a backsolve for each ele-
ment in p. Furthermore, the implementation of
this calculation is straightforward in the current
IPOPT framework. The IPOPT algorithm re-
quires the solution of (4) at each iteration. Note
that M(s(µ, p0)) is directly related to the matrix
in (4) at the solution.

The current version of IPOPT has been designed
to explicitly separate the linear algebra implemen-
tation from the fundamental algorithm code. This
separation, coupled with the similarities between
M(s(µ, p0)) and the matrix in (4) allows an effi-
cient implementation that can reuse an internal
instance of the primal-dual solver object. After
solving the NLP, the online cost of finding the



approximate solution of a perturbed problem is
only a single backsolve.

The primary purpose of separating the linear al-
gebra implementation from the fundamental algo-
rithm code was to allow specialized linear algebra
decomposition strategies for large-scale structured
problems. Dynamic optimization problems pro-
duce an almost block diagonal structure in (4)
and specialized decomposition strategies exist to
exploit this structure. The sensitivity calculation,
since it builds on the same framework, is also
independent of the particular linear algebra imple-
mentation. Therefore, the sensitivity calculation is
capable of using any specialized internal decom-
position strategy developed for IPOPT, ensuring
that it is not the bottleneck in a particular NMPC
implementation.

4. FAST NMPC BASED ON IPOPT
SENSITIVITY

We now combine concepts of the previous two
sections to develop a real-time iteration approach
for simultaneous dynamic optimization. In a man-
ner similar to (Bock et al., 2006), we classify the
NMPC calculation into off-line, background and
on-line components.

For the off-line component, we determine the
number of finite elements and collocation points
required for accurate solution of the DAE system.
While this task is often problem specific and em-
pirical, it is aided by off-line simulations and is
not difficult. In addition, the barrier parameter
in IPOPT can be tuned to improve performance
(Jockenhövel et al., 2003). For instance, µ can
remain at a small fixed value for all iterations.
This ensures feasibility and robustness by retreat-
ing from variable bounds, and it also allows for
‘warm starts’ for successive NLP solutions.

For the background component, we assume that
the NLP can be solved within no more than a
few sampling times, but that feedback delay needs
to be minimized. As a result, we perform items
(ii)-(v) in the background for the simultaneous
approach and fully converge the solution with the
simultaneous approach. As seen in the previous
section, the simultaneous approach is generally
faster than other competing approaches. Here the
dominant calculation is the repeated factorization
of the large sparse matrix in (4). Solution of
(4) requires a further cheap backsolve, which is
performed on-line.

Once a measurement is obtained, the on-line up-
date of the solution vector requires a single back-
solve (vi). As in the multiple shooting studies
(Bock et al., 2006; Diehl et al., 2005a), this cost
of the on-line component is orders of magnitude

less than the background component. As seen in
(8) the solution error in the perturbed update is
small; it scales quadratically with the perturba-
tion.

We now consider the development of this real-time
iteration approach with non-shifted and shifted
variants, similar to the multiple shooting counter-
part. The NLP for the `th horizon of an NMPC
problem is represented by:

P (`) min gf (zN+1) +
N∑

k=1

gk(zk, uk)

s.t. zk+1 = zk + Byk, k = 1, . . . N

h(zk, yk, uk) = 0, k = 1, . . . N

z1 = ẑ(`) = p0

where we define yk ∈ <ny as a vector of interme-
diate variables and B denotes a projection matrix
between variables yk and zk. This formulation
allows a general Runge-Kutta discretization, in-
cluding multiple shooting or collocation on (one
or many) finite elements between sampling times.
Here ẑ(`) is the measured or estimated state of the
plant at time t`. At the solution of problem P (`),
we provide the control û(`) := u1 to the plant.
Also, all inequalities in the NLP are replaced by
appropriate barrier terms in the objective func-
tion.

Having the solution of P (`) we would like to use
this solution for P (`+1). To derive the sensitivity
result, the Lagrange function associated to P (`)
is given by,

L = gf (zN+1) + λT
1 (z1 − p0)

+
N∑

k=1

[gk(zk, uk) + λT
k+1(zk+1 − zk −Byk)

+ γT
k h(zk, yk, uk)] (10)

and the corresponding optimality conditions are,

∇xgk − λk+1 + λk +∇xhkγk = 0
∇yhkγk −BT λk+1 = 0
∇ugk +∇uhkγk = 0

zk+1 = zk + Byk

h(zk, yk, uk) = 0

 k = 1, . . . , N

z1 = p0

∇xgf + λN+1 = 0.

(11)

Linearizing the optimality conditions at the solu-
tion of P (`), we obtain,



Lk
zz∆zk + Lk

zu∆uk + Hk
zy∆yk +∇xhk∆γk

−∆λk+1 + ∆λk = 0,

Hk
yz∆zk + Hk

yu∆uk + Hk
yy∆yk

−BT ∆λk+1 +∇yhk∆γk = 0,

Lk
uz∆zk + Lk

uu∆uk + Hk
uy∆yk +∇uhk∆γk,

+∆zk+1 −∆zk −B∆yk = 0

∇T
x hk∆zk +∇T

u hk∆uk +∇T
y hk∆yk = 0,

k = 1, . . . , N

Gf
zz∆zN+1 + ∆λN+1 = 0

∆z1 = p− p0 (12)

where we adopt the notation: Gk
zz = ∇zzgk, Lk

zz =
∇zz(gk + hT

k γk), H l
zz = ∇zz(hT

k γk), etc.

Non-shifted Variant

The linear system (12) can be written as K∆v = r
where ∆v is the perturbation in the solution of
P (`), rT = [0 0 . . . (p− p0)T ], and K is given by:

I

I L
1
zz L

1
zu L

1
zy ∇xh1 −I

L
1
uz L

1
uu L

1
uy ∇uh1

H
1
yz H

1
yu H

1
yy ∇yh1 −A

T

∇xh
T
1 ∇uh

T
1 ∇yh

T
1

−I −A I
I ·

· I
I ·

· I

I G
f
zz


.

(13)

The matrix K is already factored at the solution
of P (`) found by IPOPT. As a result, by setting
p = ẑ(`+1), the perturbed solution ∆v from (12)
requires only a single backsolve with K as the on-
line optimization cost. The error in this solution
is O(‖ẑ(` + 1)− ẑ(`)‖2).

Shifted Variant

If N is sufficiently large and the plant has no
disturbances or model mismatch, i.e., ẑ(` + j) ≈
z∗j+1, j ≥ 1, then we can use û(` + j) := u∗j+1

directly from the solution of P (`). In addition, if
‖ẑ(`+j)−z∗j+1‖ is small, we can determine û(`+j)
from a different perturbed solution of P (`). At
time t`+j , we can estimate the solution to P (`+j)
by adding the following constraints to P (`),

∆z1 = ∆p

∆zj+1 = ẑ(` + j)− z∗j+1 (14)

In other words, we force the state variable zj+1

to the plant measurement ẑ(` + j) and we adjust
the initial condition parameter ∆p to compensate.
Adding (14) to (12) leads to the condensed form
written as[

K

ET
j

∣∣∣∣ E1

0

] [
∆v
∆p

]
=

[
0

ẑ(` + j)− z∗j+1

]
(15)

where ET
1 = [−I 0 . . . 0], ET

j = [0 . . . I 0 . . . 0].

Again we take advantage of a previous factoriza-
tion of K from P (`) and shift to problem P (`+ j)

by solving for ∆p, where ∆v relate to all of the
variables in P (`). Using the existing factorization
of K, this system could be solved with a Schur
complement approach, i.e.,

−(ET
j K−1E1)∆p = ẑ(` + j)− z∗j+1

The Schur complement requires nz background
backsolves with K. Although these backsolves
are easily parallelized, this calculation may be
expensive for systems with many states.

For the implementation of this method, the back-
ground and on-line computational tasks are:

• Background:
· Obtain solution to P (`).
· For j ≤ jmax, construct ET

j+1K
−1E1

using nx backsolves with K and calculate
their L/U factors. Set j = 1.

• On-line:
· Having, ẑ(` + j), evaluate

∆p = −(ET
j+1K

−1E1)−1(ẑ(`+ j)−z∗j+1)

using precomputed L/U factors of the
Schur complement.

· With ∆p that matches zj+1 to ẑ(` + j),
calculate (the estimate for) u(`+j). This
requires a backsolve with K.

• If j = 1 start with the updated vector from
the on-line calculation to converge the solu-
tion for P (`+1) in background. If background
calculations can be completed before the next
sampling time, proceed to the Background
step. Else, set j = j + 1 and proceed to the
On-line step.

To demonstrate this real-time iteration strategy,
we consider a large-scale case study in the next
section and examine the performance of both
variants.

5. CASE STUDY: NMPC OF A
LOW-DENSITY POLYETHYLENE PLANT

5.1 Description of the Process

The computational framework presented is demon-
strated on a simulated NMPC scenario for a
large-scale high-pressure low-density polyethylene
(LDPE) process presented by (Cervantes et al.,
2002). A simplified flowsheet is presented in Fig-
ure (1). In this process, ethylene is polymer-
ized in a long tubular reactor at high pressures
(2000-3000 atm) and temperatures (150-300 oC)
through a free-radical mechanism. Accordingly a
large number of compression stages are required
to obtain these extreme operating conditions. The
final product is recovered by flash separation.
These flexible processes can obtain several dif-
ferent grades by adjusting the reactor operating
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Fig. 1. High-pressure LDPE Process Flowsheet

conditions. Here, the desired final end-use proper-
ties such as the polymer melt index are obtained
by control of the reactor temperature, pressure
and concentration of a chain-transfer agent used
to control the polymer molecular weight (usually
butane and propylene).

The process presents a difficult dynamic sys-
tem. The reactor dynamics are much faster as
compared to the slow responses in the recycle
loops. Furthermore, long time delays are present
throughout the compression and separation sys-
tems. Due to the exothermic and complex nature
of the polymerization, the reactor temperature
and pressure are enforced strictly along the oper-
ating horizon following complex recipes. Following
these lines, the main operational problem in these
processes consist in providing fast adjustments to
the butane feed and purge stream to keep the melt
index at a desired reference value. This is done
during different operating stages such as grade
transitions (switching between two different oper-
ating points) and normal operation (disturbance
rejection).

5.2 Dynamic Process Model

Due to the fast dynamics presented in the reactor
and to the enforcement of strict operating con-
ditions, an overall dynamic model of the plant
can be described by a large number of differential
balances around continuous stirred tanks (CST)
representing the different compression and sepa-
ration stages of the process. The dynamic bal-
ances considered include four components: ethy-
lene (j=1), butane (j=2), methane (j=3) and
impurities (j=4). This last component groups sev-
eral components present in minor quantities. De-
tails on the derivation of the model can be found
were presented by (Cervantes et al., 2002). Non-
steady mass balances for three components are de-

veloped while the fourth component is obtained by
difference. Equation (16) shows the corresponding
balance for the j-th component in every piece of
equipment in the plant:

d
(
V ρwj

)
dt

= F wj
i − Fwj (16)

where F , mass flowrate (kg/h); V , equipment
volume (m3); t, time (s); ρ, gas density (kg/m3);
wj

i , inlet weight component of j-th component;
wj , outlet weight component of j-th component.
The gas density is calculated through nonlinear
thermodynamic relations. Most of the complexity
of the dynamic model is determined by the pres-
ence of time delays. For simplicity, these delays
are lumped into six overall ones located along
the process and are directly incorporated into the
model by considering each one as a tube of length
L where a plug flow is assumed. The resulting
component material balances are given by the
following set of partial differential equations:

∂wj

∂t
+

1
τ

∂wj

∂z
= 0(

∂wj

dz

)
L

= 0 wj(z, 0) = wj
0 (17)

where τ = ρA
F represents the associated time

delay. The PDEs are transformed to ordinary
differential equations applying a finite differences
scheme with N=10 intervals. The resulting large-
scale DAE model contains 289 differential and
64 algebraic state variables. Furthermore, the in-
corporation of thermodynamic relations increases
significantly the complexity of the model.

5.3 Formulation of NMPC Problem

In this work, we are interested on obtaining a opti-
mal feedback policy that minimizes the switching
time between to steady states corresponding to
the production of polymer grades. Minimization is
crucial since it lead to substantial saving in waste
product. Since the melt index is inferred from the
concentration of butane in the recycle loop, we
can use this as the controlled variable and we use
the butane feed and purge stream as manipulated
variables. The NMPC problem solved on-line at
every sampling time t` is given by,



min
∫ t`+tp

t`

(
wC4(t)− wr

C4

)
+

(
FC4(t)− F r

C4

)
+

(
Fpu(t)− F r

pu

)
s.t.

Equations (16)-(17)

z(t = t`) = ẑ(`)

zL ≤ z ≤ zU

yL ≤ y ≤ yU

uL ≤ u ≤ uU (18)

where tp is the prediction time, wC4 is weight frac-
tion of butane in the recycle loop and subscript r
denotes a reference value. Here, we consider equal
control and prediction times. Notice that this for-
mulation can easily be reformulated to the general
form (1a)-(1g) if we consider a fixed instant k and
replace the objective function by introducing an
additional state variable.

5.4 Solution of NMPC Problem

Following a simultaneous full-discretization ap-
proach, problem (18) is converted into a large-
scale NLP problem. A total of 15 finite elements
and 3 collocation points are used for the dis-
cretization. The finite elements are placed are
placed in order to match sampling times along
the moving horizon. The resulting NLP problem
of form (2) contains 27,135 constraints, 9360 lower
bounds, 9360 upper bounds and 30 degrees of
freedom. Since grade transitions are usually slow,
long prediction times on the order of hours are
used with sampling times on the order of minutes.
In all our experiments we set tp= 1.5 min and
t`+1 − t`=6 min.

As a first step, we study the off-line solution of
problem (18) using IPOPT. In all our numeri-
cal experiments a monotone barrier parameter µ
update with an initial value of 1x10−6 is used,
while the rest of the algorithmic parameters were
specified with their default values. Computational
times associated to the solution of the problem
are presented in Table (2). It is clear that the
vast majority of the total CPU time is devoted
for the factorization of the KKT matrix. A single
factorization can take up to 36 seconds. Although
it seems feasible to solve full problems within the
specified sampling time, a long feedback delay
would be introduced, deteriorating the perfor-
mance of the controller.

In order to minimize the feedback delay, we con-
sider the proposed NLP sensitivity approaches in
both its shifted and non-shifted variants and com-
pare them with a conventional NMPC approach.
Some general characteristics of the approaches
are:

Table 2. Average computational times
associated to the off-line solution of

problem (18)

Algorithmic Step CPU Time (s)

Full Solution (10 iterations) 351.5

Single Factorization of KKT Matrix 33.9

Step Computation (single backsolve) 0.94

Rest of Steps 0.12

Table 3. On-line and off-line average
CPU times for the different NMPC ap-

proaches

NMPC Approach On-line (s) Off-line (s)

Full Solution 358.89 —

Non-shifted 0.94 —

Shifted (Total) 1.04 272.5

Schur Complement — 272.5
Reduced System 0.1 —

Final Backsolve 0.94 —

• Conventional NMPC Approach: Solve full
problems to optimality. Long feedback delays
introduced.

• NLP Sensitivity Approach - Non-shifted Vari-
ant: Solve a full problem, obtain approxi-
mate solutions for Ncycle subsequent sam-
pling times by perturbation of the initial
conditions while an updated full problem is
solved. Upon solution, obtain approximate
solutions around this updated full solution.
No shifting in the primal and dual variables
is performed, leading to inconsistency on the
active sets. Consequently, even in the absence
of plant-model mismatch, the approximation
is not exact for subsequent problems if active
set changes are present along the prediction
horizon.

• NLP Sensitivity Approach - Shifted Variant:
Similar to previous approach but a shifting in
primal and dual variables performed. The ap-
proximate solutions are exact for subsequent
problems if there is no plant-model mis-
match and sufficiently long prediction hori-
zons. Consistency in the active sets along the
prediction horizon is preserved.

In this first study we consider Ncycle=1, i.e.; one-
to-one cycles of full solution-approximate solution
are used to provide feedback. Different combina-
tions of these cycles can be considered, depending
on the permitted feedback delay for the particular
dynamic system. Although the actual feedback
delay introduced by the different approaches affect
the actual closed-loop response, they have been
ignored. The plant response is obtained by intro-
ducing strong and random perturbations to the
time delays τ in the recycle loops.

The performance of the NMPC approaches is pre-
sented in Figure(2). Notice that the optimal feed-
back policy involves the saturation of both control
valves for the first 2500 seconds of operation and
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Fig. 2. Closed-loop performance of the different
NMPC approaches

finally places the flow rates to values correspond-
ing to the new operating point. It is interesting
to observe that the NLP sensitivity shifted vari-
ant provides close-to-optimal performance of the
controller, as opposed to the non-shifted variant,
which encounters problems in the presence of ac-
tive set changes along the prediction horizon. This
is easily observed at the eight sampling time (2500
seconds) where a response delay of one sampling
time is obtained. In this case, the non-shifted
approach preserves the active set of the purge
stream flow rate obtained from the solution of
the previous full problem. The resulting subop-
timal solution translates into a long overshoot
of around 20 minutes leading to the production
of large amounts of off-spec product. Although
the sampling times in this initial experiment are
quite large, the results imply that it is possible
to provide close-to-optimal immediate feedback
at a high frequency (in the order of seconds) by
increasing Ncycle and using a finer discretization,
while the full problem can still be solved at a lower
frequency on the order of minutes.

The on-line and off-line computational times re-
quired by the different NMPC approaches are pre-
sented in Table (3). On average, the full solution
requires around 369 seconds of on-line compu-
tation. On the other hand, the non-shifted vari-
ant requires a negligible amount of on-line time
(around 0.94 seconds for a single backsolve) with
no off-line tasks. Similarly, the shifted variant re-
quires a negligible on-line time of around 1.04 sec-
onds for the solution of the dense reduced system
and a final backsolve to obtain the updated so-
lution vector. However, it requires a considerable
amount of off-line time (272 seconds on average)
for the construction of the Schur complement.
Although this can be done in the background and
only once per cycle, it is still important to reduce
this off-line time in order to improve the overall
performance of the controller.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

Sampling Instant

Ite
ra

tio
ns

Direct
Shifted
Standard

Fig. 3. Number of iterations required for the
solution of the full problem using different
initialization strategies

Finally, we consider the use of the proposed
NLP sensitivity approaches as a base for effective
warm-starting strategies. In this case, we consider
an NMPC scenario involving the initialization of
the full problem at each sampling instant using
an approximate solution for the new initial con-
ditions obtained around the solution of the previ-
ous problem. In order to compare the suitability
of both the shifted and non-shifted variants, we
compare the number of iterations taken for the
solution of the full problem. The results are pre-
sented in Figure (3). Again, it is clear that the
shifted variant provides an accurate warm-starts
for all the sampling times. On the other hand,
since the non-shifted variant provides inconsistent
active sets, the optimizer takes a large number of
iterations in order to correct this. In some cases it
is even more convenient to initialize the problem
with the solution of the previous problem (nor-
mal initialization). However, notice that the non-
shifted approach provides exact approximations
at the end of the horizon where no more active set
changes are present along the prediction horizons.

6. CONCLUSIONS AND SUMMARY

The shifted variant allows a number of modifi-
cations. First, the estimate for u(` + j) can be
improved by additional iterations of the on-line
calculation, by substituting the updated residu-
als f(v) of the nonlinear KKT equations in the
right hand side, i.e., −(ET

j+1K
−1E1)∆p = ẑ(` +

j) − z∗j+1 − ET
j+1K

−1f(v). This requires a back-
solve with the factored Schur complement and two
backsolves with K.

Second, to reduce the number of backsolves in
background, an iterative algorithm can be applied
to select ∆p directly to match the desired value
for zj+1, i.e.,

rm = ẑ(` + j)− zj+1(∆pm)

∆pm+1 = ∆pm + ϕ(∆pm, rm) m = 1, . . .

This can be done with a number of iterative meth-
ods, including quasi-Newton (e.g., Broyden) or a
preconditioned Krylov method, such as GMRES,
where a previous value of (ET

j+1K
−1E1)−1 can be



used as the preconditioner; each iteration requires
a backsolve with K.
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